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Abstract: Biological tissue has a complex structure and exhibits rich spectroscopic behavior.
There has been no tissue model until now that has been able to account for the observed spec-
troscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum
pudding random medium (PPRM) model for biological tissue which succinctly describes tissue
as a superposition of distinctive scattering structures (plum) embedded inside a fractal continu-
ous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces
the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the
anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to
the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying
the tissue architecture and microscopic structures on average from macroscopic probing of the
bulk with scattered light alone without tissue excision. We demonstrate this potential by visual-
izing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic,
fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement.
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1. Introduction

One central tenet in the application of light in biology and medicine is noninvasive diagnosis
of the structure and function of tissue from tissue-light interaction [1]. Scattered light carries
important information about the morphology and optical properties of the individual scatterers
and can be used to identify structural alterations or heterogeneities in tissue due to disease or
physiological variations [2–4]. The scattering and absorption properties of tissue determine light
transport (such as penetration, reflection, and transmission) and energy deposition in tissue, key
to both diagnostic and therapeutic applications of light. Significant advances have been made
during the past decades in characterizing and modeling the optical properties of different types
of tissue (see, for example, [5, 6], for recent reviews).

Biological tissue has a complex structure which determines the optical properties of tissue.
Microstructures in biological tissue range from organelles 0.2−0.5μm or smaller, mitochondria
1−4μm in length and 0.3−0.7μm in diameter, nuclei 3−10μm in diameter, to mammalian cells
10 − 30μm in diameter. The refractive index variation is about 0.04 − 0.10 for soft tissue with
a background refractive index n � 1.35 − 1.37 [7, 8]. When the wavelength, λ, of the probing
light increases, light is less scattered by tissue [5, 6] and the reduced scattering coefficient (μ′s)
decreases. Light is also expected to be more isotropically scattered into all directions as the
scatterers appear smaller with respect to the wavelength and the anisotropy factor (g) defined
as the mean cosine of the scattering angles of tissue gets smaller. This widely-accepted notion
about the wavelength dependence of μ′s and g is, however, only partially true and the trend of g
is contradictory to that found by thorough measurements for various tissue types within visible
and near-infrared spectral range [6, 9, 10]. The “anomalous” increase of g with the probing
wavelength seems to be the rule rather than the exception for tissue light scattering [6].

Viewed on a microscopic scale, the constituents of tissue have no clear boundaries and
merge into a continuum structure. Furthermore, many biological tissues have fractal-like or-
ganization and are statistically self-similar [11–14]. Light scattering property of a tissue was
hence attributed to the fluctuation of the refractive index distribution in tissue. A fractal model
[12, 15–17] and later a Whittle-Matern family of correlation functions [18, 19] have been used
successfully to describe such fluctuation in tissue. These models show that μ′s has a powerlaw
dependence on the wavelength (μ′s ∝ λ−b with b > 0 being the scattering power) and correctly
predict the decrease of tissue scattering with λ [16]. Unfortunately, these models all predict
the decrease of the anisotropy factor g with λ, disagreeing with experimental observations. The
anisotropy factor is one central parameter governing how light randomizes its directionality and
migrates with scattering in random media and bearing the direct relation to the morphology and
optical properties of the underlying microscopic scattering constituents. The contradiction be-
tween experiments and theoretical predictions on g reveals the current lack in the understanding
of the nature of tissue light scattering. There is no tissue model up to now able to account for
the observed spectroscopy of scattering and its anisotropy.

Recently, estimation of the effective scatterer size or nuclear morphology in deep tissue from
spectroscopic diffuse light measurements have been reported [20, 21]. This could potentially
lead to highly desirable in vivo optical histopathology of deep tissue from scattered light alone.
An accurate yet succinct picture and model of the complex structure of biological tissue will
be the foundation towards this direction, achieving extremely desirable remote microscopy of
biological tissue from bulk spectroscopic light scattering without any tissue excision.
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In this article, after first reviewing continuum light scattering models for tissue and identi-
fying their deficiency. we present, for the first time, a Plum Pudding Random Medium model
(PPRM) for biological tissue. PPRM properly describes the scattering constituents in tissue
that tissue is a continuum yet with some prominent structures which are distinctive from the
background medium. In this unified view, tissue light scattering is a superposition of both back-
ground refractive index fluctuation and distinctive prominent structures. The distinctive promi-
nent structure is responsible for the observed “anomalous” anisotropy trend and provides a
potential resolution to the long-lasting puzzle in the spectroscopic properties of tissue. After-
wards, by establishing the explicit link of the macroscopic scattering parameters of tissue to the
microstructure, we show PPRM opens up a new venue of quantifying the microscopic scatte-
ring constituents in tissue from macroscopic probing of a bulk from scattered light alone. We
demonstrate this potential at the end by visualizing the fine microscopic structural alterations in
breast tissue (normal adipose tissue, normal glandular tissue, fibrocystic tissue, fibroadenoma,
and ductal carcinoma) from PPRM analysis of noncontact spectroscopic measurement.

2. Theory

2.1. Background refractive index fluctuation

One major source for light scattering by tissue is attributed to the random fluctuation of the
background refractive index for biological tissues and cells [16, 22]. Denote Sbg(q) the scatte-
ring amplitude due to the random fluctuation of the background refractive index. The squared
background scattering amplitude is specified by [8]

∣
∣
∣Sbg(q)

∣
∣
∣
2
{

μ2

1
= 2πk6V R̂(q)

{

μ2 (parallel polarized)
1 (perpendicular polarized)

(1)

where q = q(cos φ, sin φ, 0) is the wave vector transfer with a magnitude q = 2k sin θ
2 ,

k = 2πn0/λ is the wave number with n0 the average refractive index of the background medium
and λ the wavelength of the incident beam in vacuum, θ, φ are the polar and azimuthal angles
of scattering, respectively, μ ≡ cos θ, V is the volume, and R̂(q) = 1

(2π)3

∫

R(r) exp(iq · r)dr
is the power spectrum of the random fluctuation of the background refractive index specified
by its correlation function R(|r1 − r2 |) = 〈δm(r1)δm(r2)〉 with 〈δm(r)〉 = 0. The intensity of
scattered parallel or perpendicular polarized light is proportional to the corresponding scatte-

ring cross section given by
∣
∣
∣Sbg(q)

∣
∣
∣
2
/k2 for light of respective polarization. The scattering cross

section for unpolarized light is given by the mean of the two scattering cross sections for light
of parallel or perpendicular polarization. The differential scattering cross section for light scat-
tering into the direction (θ, φ) from an incident beam linearly polarized along the x axis (φ = 0)
is given by

σ(θ, φ) = 2πk4V R̂(q)(sin2 φ + μ2 cos2 φ). (2)

The scattering and reduced scattering coefficients of the medium are then expressed as

μs ,bg=

∫

σ(θ, φ)dΩ=
π

k2

∫ 1

−1

∣
∣
∣Sbg(q)

∣
∣
∣
2

(1+μ2)dμ, (3)

μ′s ,bg=

∫

σ(θ, φ)(1−μ)dΩ= π
k2

∫ 1

−1

∣
∣
∣Sbg(q)

∣
∣
∣
2

(1+μ2)(1−μ)dμ (4)

after setting V in Eq. (1) to be unity.
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The fractal random continuous medium model [16] assumes the correlation function of the
random fluctuation of the background refractive index to be

R(r) = β2
(

r
lmax

)4−D f

Γ

[

−(4 − D f ),
r

lmax

]

. (5)

Here the distribution of the correlation length l is given by η(l) = η0l3−D f /l
4−D f

max (0 ≤ l ≤
lmax) normalized to

∫ lmax

0
η(l)dl = 1, η0 is a dimensionless constant, β2 ≡

〈

δm(0)2
〉

η0 repre-

sents the effective random fluctuation strength where
〈

δm(0)2
〉

is the squared amplitude fluc-
tuation of the refractive index, D f is the fractal dimension, and Γ is the incomplete Gamma
function. For typical soft tissue, 0 < D f < 7 and

√〈

δm(0)2〉 ∼ 0.01. The value of η0 = 4 − D f

when D f < 4. The cutoff correlation length lmax is the outer scale and 0 is the inner scale in
Eq. (5). Strictly, when D f ≥ 4, the inner scale is no longer exactly 0 and η0 depends also on the

nonzero inner scale lmin (η0 = (4 − D f )/
[

1 −
(
lmin
lmax

)4−D f
]

for D f � 4 and η0 = 1/ log
(
lmax
lmin

)

for D f = 4). However, in this case Eq. (5) can still be used as light scattering by fluctuations of
a correlation length below the inner scale is much smaller and can be ignored. The background
squared scattering amplitude is now

∣
∣
∣Sbg(q)

∣
∣
∣
2
=

2
π

β2V k3X3

7 − D f
2F1(2,

7 − D f

2
,

9 − D f

2
, −2(1 − μ)X2) (6)

if D f < 7 where the size parameter X ≡ klmax and 2F1 is the Gauss hypergeometric function.
The fractal continuum medium model bears a close connection to a power law size distribution
of scatterers. Indeed, using the approximate amplitude scattering matrix [23] for spherical par-
ticles, a discrete particle model assuming a particle size distribution of the power law (number
density of particles ∝ a−D f where a is the radius) shall yield the same amplitude scattering func-
tion (6) as in the fractal continuous medium model. This illustrates the correlation length l in
the fractal continuous medium model may be intuitively interpreted as the radius of “fictional”
scattering centers present within tissue [22]. The number density of the scattering centers of
radius l distributes according to a power law l−D f .

The Whittle-Matern family of correlation function for the fluctuation of the background re-
fractive index takes the form of

R(r) =
〈

δm(0)2
〉

21−ν |Γ(ν) | −1
(r
l

)ν

Kν

(r
l

)

(7)

where Kν is the modified Bessel function of the second kind. The Whittle-Matern correlation
function has been used extensively to model turbulence [24] and was later used to model tissue
light scattering [12,18,19]. The parameter l is the outer scale. When −3/2 < ν < 0, Eq. (7) can
still be used (with an implicit nonzero inner scale). The Whittle-Matern random medium model
gives:

∣
∣
∣Sbg(q)

∣
∣
∣
2
= 2

〈

δm(0)2
〉 Γ(ν + 3

2 )V k3X3

π1/2 |Γ(ν) |
[

1 + 2(1 − μ)X2
]−ν− 3

2 (8)

when ν > −3/2 where X ≡ kl.
Given the background squared scattering amplitude (6) and (8) specified, respectively, in the

fractal and Whittle-Matern models, the scattering properties originating from the background
refractive fluctuation is simply determined by Eqs. (2-4). Figure 1 shows the trends of various
scattering properties: the scattering coefficient μs , the reduced scattering coefficient μ′s , the
anisotropy factor g ≡ 1 − μ′s/μs , and the scattering power b (μ′s ∝ λ−b) predicted by the two
models. The scattering power is computed over the spectral range from 500nm to 700nm at the
center wavelength 600nm.
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Fig. 1. The normalized scattering coefficient β−2μs lmax (
〈

δm(0)2
〉−1
μs l), reduced scat-

tering coefficient β−2μ′s lmax (
〈

δm(0)2
〉−1
μ′s l), the anisotropy factor g, and the scattering

power b in the fractal (top row) and Whittle-Matern (bottom row) continuous medium
model. The size parameter is klmax and kl, respectively, in the two models. The scattering
power b is fitted from μ′s (λ) over the spectral window 500nm < λ < 700nm centered at
600nm.

For all size parameters, the normalized μs , μ′s , and g in both fractal and Whittle-Matern
models increase with the size parameter, i.e., μs , μ′s , and g all decrease with the wavelength.
The dependence of their scattering properties on the wavelength reduces to an identical power
law if interchanging D f and (4 − 2ν) when X � 1 (see Appendix A). There are, however,
notable differences that first the dependence of the normalized μs and μ′s on D f in the fractal
model is monotonic across the whole size parameters (increases with D f ) whereas it is not the
case for the dependence on ν in the Whittle-Matern model. Moreover, the scattering power b
is more restrictive in the fractal model than that in the Whittle-Matern model. For example, b
stays above 0.25 in the fractal model for a medium of g = 0.99 whereas b can be much smaller
than 0.25 in the Whittle-Matern model for the medium of an identical anisotropy factor.

Tissue phantoms which consist of only small particles exhibit similar trends [25] as above.
Thorough measurements on various tissue types within visible and near-infrared spectral range
[9,10] have revealed unexpectedly contradictory trends in, in particular, g, to the above theoreti-
cal prediction as well observed by Jacques in his recent review of optical properties of biological
tissues [6]. A pure continuum light scattering model has also been found to be insufficient in
an extensive study of angular light scattering of water suspensions of human cervical squamous
carcinoma epithelial (HiLa) cells over a wide range of wavelengths (400 to 700nm) [8, 26].

2.2. Plum pudding random medium

The deficiencies of the fractal and Whittle-Matern continuous medium models for tissue light
scattering demand a reexamination of the nature of tissue light scattering. Although the refrac-
tive index distribution in tissue resembles turbulence yet it is not a turbulence. Some prominent
structures such as the cell nuclear structure of much higher refractive index than the background
are distinctive from the surrounding environment. A more realistic picture of tissue is a compos-
ite medium that is a continuum (pudding) yet with some prominent distinctive structures (plum)
embedded inside. The superposition principle of light scattering by composite particles [27]
provides a convenient framework for describing light scattering by such a system.

Light scattering in Plum Pudding Random Medium model of tissue consists of scattering
by distinctive scattering structures and the fluctuation of the background refractive index. The
former includes, for example, the nuclear structure in soft tissue and fiber bundles in muscle.
The latter incorporates smaller scattering structures such as organelles and refractive index vari-
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ations throughout the tissue continuum. The total squared scattering amplitude, according to the
superposition principle of light scattering in composite particles [8, 27], can be written as:

|S(q) |2 = |Score(q) |2 +
∣
∣
∣Sbg(q)

∣
∣
∣
2

(9)

where Score(q) represents the scattering amplitude function of the prominent distinctive scatte-
ring “cores” and Sbg(q) represents the random fluctuation of the background refractive index
described, for example, by the fractal random medium model (6) or the Whittle-Matern model
(8).

Now consider light scattering by the prominent distinctive cores in tissue. The cores are of
arbitrary shapes and randomly oriented in tissue. The core could be assumed to have a spher-
ical shape after averaging over all these individual ones. Further, the cores can be regarded as
optically soft (|m − 1| � 1 where m ≡ ncore/nbg is the relative refractive index of the core).
To account for the polydispersity of the cores, the radius of the core is assumed to follow a
lognormal distribution f (a) on the radius a (see Appendix B). A different form of particle size
distribution may be used. Scatterers of different size distributions but of the same effective ra-
dius and effective variance behave alike in their properties of light scattering [28]. The scattering
efficiencies for soft particles following the lognormal size distribution of parameters ā and δ are
given by:

Q̄sca( x̄ ,m, δ) = ā−2
∫

a2Qsca(ka,m) f (a)da, (10)

Q̄′
sca( x̄ ,m, δ) = ā−2

∫

a2Q′
sca(ka,m) f (a)da (11)

respectively where x̄ ≡ kā. Mie theory [29] can be used to compute these efficiencies in general
and empirical expressions are given in Appendix C. The corresponding scattering cross section
is given by πā2Q̄sca etc.

The polydispersity of the cores tends to smooth and remove the Mie ripples in the spectral de-
pendence of their scattering properties. To gain insight into the scattering characteristics of such
polydisperse soft particles, one representative case of the effective size variance νeff = 1.0%
(δ = 0.1) is shown in Fig. 2. The scattering efficiencies collapse approximately to one universal
curve respectively after proper scaling. From this similarity, empirical expressions have been
obtained (see Appendix C). It is clear that the wavelength dependence of the scattering coeffi-
cients and the anisotropy factor for such soft particles are not monotonic. There exists multiple
regions where their values decrease with the size parameter and increase with the wavelength.
In particular, the efficiencies Q̄sca and Q̄′

sca reach their maximal values at a size parameter of
2 |m − 1|−1 and 1.245 |m − 1|−1.725, respectively, and the anisotropy factor g decreases with
the size parameter (and increases with the wavelength) within 2 ≤ |m − 1|−1 x ≤ 3.8.

Based on the relationship (9), the bulk scattering properties of the composite medium are
then described by the summation from the core (plum) and background fluctuation (pudding)
components,

μs = μs ,core + μs ,bg = Ncπā
2
cQ̄sca( x̄c ,mc , δ) + μs ,bg , (12)

μ′s = μ′s ,core + μ
′
s ,bg = Ncπā

2
cQ̄′

sca( x̄c ,mc , δ) + μ
′
s ,bg (13)

where Nc is the number density of the core with size parameter x̄c = kāc , the refractive index
mc relative to the background, and of a lognormal size distribution with parameter āc and δ,
and μs ,bg and μ′

s ,bg are given in Eqs. (3, 4).
For most tissues, the size parameter of their core within visible and near-infrared spectral

range is less than 1.245 |mc − 1|−1.725 and resides in the neighborhood of 2 |mc − 1|−1. The
anisotropy factor of light scattering, g = 1 − Q̄′

sca/Q̄sca, for the core may increase with the size
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Fig. 2. The scattering efficiencies collapse approximately to one universal curve for
|m − 1| ≤ 0.15 and 0 < x < 200 after proper scaling. The variations in the anisotropy factor
increases with the refractive index m. The shaded region in g within 2 ≤ |m − 1|−1 x ≤ 3.8
corresponds to the “anomalous” increasing anisotropy factor with the wavelength within
the visible and near-infrared spectral range observed in most biological tissues.

Fig. 3. The Plum Pudding Random Medium model treats tissue as a composite medium
with some prominent distinctive structures (plum) embedded inside a continuum (pudding).
The former includes, for example, the nuclear structure in soft tissue. The latter incorporates
smaller scattering structures such as organelles and refractive index variations throughout
the tissue continuum. PPRM faithfully reproduces the wavelength dependence of tissue
light scattering and attributes the “anomalous” trend in the anisotropy (g increases with the
wavelength) to the plum and the powerlaw dependence of the reduced scattering coefficient
on the wavelength to the fractal scattering pudding.

parameter and decreases with the wavelength (when x̄c < 2 |mc − 1|−1) or decrease with the
size parameter and increase with the wavelength (when 2 |mc − 1|−1 < x̄c < 3.8 |mc − 1|−1).
The core in many tissue types belongs to the latter, responsible for the observed “anomalous”
anisotropy trend of tissue light scattering (see Fig. 2). Such cores tend to be more dense when the
size decreases. The Plum Pudding Random Medium model for tissue is summarized schemati-
cally in Fig. 3.

It should be noted that the dependence of the scattering efficiency and the reduced scattering
efficiency of the core on the wavelength is mainly through the product of the power of (mc − 1)
and the size parameter, and, in particular, with the former in the form of (mc−1) x̄c and the latter
(mc − 1)1.725 x̄c , respectively (see Appendix C). The simultaneous knowledge of scattering and
reduced scattering coefficients can thus decouple (mc −1) and x̄c more reliably than with either
parameter alone, enabling accurate determination of both the refractive index and the size of the
core.

The determination of the background refractive index fluctuation and the properties of the
core completely characterizes and can further depict the microstructure and scattering con-
stituents in biological tissue. That quantification of tissue, although fundamentally different
from microscopy of a tissue section, offers the quantitative tissue architecture and microscopic
structure on average. We will term that as remote microscopy, derived from non-contact spec-
troscopic light scattering measurement on a bulk without tissue excision.
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Fig. 4. Plum pudding random medium tissue model fitting of the fresh porcine dermis
tissue. The columns from left to right show μs , μ′s and g. The background refractive index
fluctuation and the core are shown together with the PPRM tissue model. Experimental
data is adapted from Ma et al [10].

3. Results and discussions

Figure 4 shows the PPRM tissue model fitting [30] (see Appendix D) to the scattering parame-
ters of the fresh porcine dermis tissue measured from diffuse reflectance and transmission using
an integrating sphere [10, 31]. Neither the plum nor the pudding alone can fit the data. The
parameters from the PPRM fitting is summarized in Table 1. The fitted parameters fully char-
acterizes the tissue and provides microscopic details on the underlying scattering structure. The
background refractive index fluctuation has a maximum correlation length lmax = 0.308μm and
fractal dimension D f = 6.58. The effective amplitude of the fluctuation is β = 0.545 × 10−3,
which depends on both the amplitude

√〈

δm(0)2〉 and the inner scale lmin of the background
refractive index fluctuation. The value of β yields

√〈

δm(0)2〉 = 0.0115 assuming the inner
scale lmin = 20nm for the background refractive index fluctuation. This inner scale corresponds
to the size of the smallest structure in tissue [7]. The core in the dermis has a concentration
of Nc = 0.473 × 10−3μm−3, i.e., one core per cube of size 12.8μm on average. The core has
an average radius āc = 0.915μm and the relative refractive to the background mc = 1.172.
The porcine dermis has a refractive index nbg � 1.36 within the spectral range [10] and hence
ncore � 1.59. The core may correspond to the nucleolus which has a substantially higher refrac-
tive index than the rest of the nucleus and is of similar size [32, 33]. Another possibility is due
to melanosomes whose refractive index ranges between 1.55 − 1.65 [34] as the fresh porcine
dermis in the reported experiment contained melanin [10]. The plum (cores) and pudding (back-
ground refractive index fluctuation δm) in porcine dermis with parameters specified in Table 1
is shown in Fig. 5.

Table 1. Fitted parameters for fresh porcine dermis tissue. The fluctuation amplitude
√

〈

δm(0)2
〉

is computed from β by assuming the inner cutoff for the background refrac-
tive index fluctuations to be lmin = 20nm.

Background Core
β(×10−3) lmax(μm) D f Nc (μm−3) āc (μm) mc δ

√〈

δm(0)2〉 error
0.545 0.308 6.58 0.473 × 10−3 0.915 1.172 0.051 0.0115 0.217

The relative importance of the two components (background vs core, or, pudding vs plum)
in their contributions to μs and μ′s vary significantly with wavelength. For example, the core
contributes 35% to μs and the background contributes 94% to μ′s at 450nm whereas the core
contributes 96% to μs and the background contributes 30% to μ′s at 1400nm.

We have also attempted to use the Whittle-Matern model for the background refractive index
fluctuation in the PPRM tissue model to fit the experimental data and were unable to get a
satisfactory fitting result. This suggests although both the fractal and Whittle-Matern model
have similar behavior at the large size parameter limit they behave quite differently at the low

                                                                              Vol. 8, No. 6 | 1 Jun 2017 | BIOMEDICAL OPTICS EXPRESS 2887 



−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

δm

Fig. 5. The plum (core) and pudding (background refractive index fluctuation) in fresh
porcine dermis. The whole window size is 30μm × 30μm. The blue square delineates a unit
cell which contains exactly one core. A core of most probable radius āc exp(−δ2) is shown,
surrounded by a shaded area of radius āc exp(−δ2+√2 log 2δ) at which the number density
of the core drops to half maximum. The core has a relative refractive index mc = 1.172
(“red” color).

and median size parameter regime and that the fractal model may describe the tissue background
refractive index fluctuation more accurately. We hence report only the performance of the PPRM
model with the fractal continuum model hereafter.

Most importantly, the Plum Pudding Random Medium tissue model provides a unified plat-
form to characterize the fine details of structure in tissue. As one example, the microscopic
structural alterations in breast tissue associated with carcinogeneses are quantified from spec-
troscopic measurement alone. Figure 6 shows the PPRM tissue model fitting to various disease
states of freshly excised and homogenized breast tissue: normal breast adipose tissue, normal
glandular breast tissue, fibrocystic tissue, fibroadenoma, and ductal carcinoma reported in [35].
Fibrocystic tissue and fibroadenoma are the most common benign breast conditions. Their fitted
parameters are summarized in Table 2. The plum (cores) and pudding (background refractive
index fluctuation δm) over a whole window of size 30μm × 30μm for all five types of breast
tissue simulated with RandomFields [36] is shown in Fig. 7. The blue square delineates a unit
cell which contains exactly one core. A core of most probable radius āc exp(−δ2) is shown,
surrounded by a shaded area of radius at which the number density of the core drops to half
maximum.

Significant structural alterations can be observed from Table 2 and Fig. 7. The background
refractive index of breast tissue is nbg � 1.36. The refractive index for the core can be found to
be ncore = 1.49, 1.45, 1.41, 1.44, and 1.46, respectively, for normal breast adipose tissue, normal
glandular breast tissue, fibrocystic tissue, fibroadenoma, and ductal carcinoma. The values of
ncore agree with the respective refractive index of the nucleus in these different breast tissues
[20, 21, 37]. The fibrocystic cell nucleus is more round than that in either normal or malignant
breast cells and has a radius around 6μm [38]. The nucleus of normal and malignant breast
cancer cells has more complex structure with the nucleolar size (radius) ranging from 1μm to
2μm [38, 39]. The core can hence be identified as the nucleus or nucleoli inside a nucleus. The
normal adipose tissue is seen to have the background refractive index fluctuation of the smallest
fractal dimension (D f = 1.56) and the core with the largest refractive index (mc = 1.097)
and biggest size variability (δ = 0.177). The core in the normal fibrocystic tissue has the least
concentration (Nc = 7.76 × 10−5μm−3), largest size (āc = 6.345μm), smallest refractive index
(mc = 1.039) and least size variability (δ = 0.004). The normal glandular breast tissue and
fibroadenoma share cores of similar characteristics whereas the background refractive index
fluctuation is seen to be with a half fluctuation amplitude (β = 3.34 × 10−3 vs 6.93 × 10−3), a
half correlation length (lmax = 0.111μm vs 0.198μm), and an increase in D f (5.65 vs 4.59) in
the latter than those in the former. Ductal carcinoma is seen to be associated with the core with
the highest concentration (Nc = 1.83 × 10−3μm−3) and smallest size (āc = 1.39μm).

Similarly, the relative importance of the two components (background vs core, or, pudding
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vs plum) in their contributions to μs and μ′s vary significantly with wavelength (see Table 3).
The core dominates in μs whereas the background refractive index fluctuation in μ′s in general.
The importance of the core increases and that of the background decreases with the probing
wavelength for both μs and μ′s .

Table 2. Fitted parameters for (a) normal breast adipose tissue, (b) normal glandular breast
tissue, (c) fibrocystic tissue, (d) fibroadenoma, and (e) ductal carcinoma. The fluctuation

amplitude
√

〈

δm(0)2
〉

is computed from β by assuming the inner cutoff for the background
refractive index fluctuations to be lmin = 20nm.

Background Core
β(×10−3) lmax(μm) D f Nc (μm−3) āc (μm) mc δ

√〈

δm(0)2〉 error
Adipose 6.08 2.280 1.56 5.46 × 10−4 2.176 1.097 0.177 0.0039 0.039

Glandular 6.93 0.198 4.59 1.16 × 10−3 1.820 1.069 0.070 0.0153 0.035
Fibrocystic 5.58 3.524 4.12 7.76 × 10−5 6.345 1.039 0.004 0.0150 0.020

Fibroadenoma 3.34 0.111 5.65 1.07 × 10−3 2.054 1.061 0.077 0.0104 0.035
Ductal Carcinoma 3.46 0.561 4.73 1.83 × 10−3 1.390 1.070 0.066 0.0131 0.034

Table 3. Relative importance of the background refractive index fluctuation (pudding) vs
the core (plum) to the scattering coefficient μs and the reduced scattering coefficient μ′s at
the probing wavelengths of 500nm and 1100nm.

μs μ′s
500nm 1100nm 500nm 1100nm

Adipose 46% : 54% 10% : 90% 7% : 93% 6% : 94%
Glandular 12% : 88% 3% : 97% 78% : 22% 49% : 51%
Fibrocystic 80% : 20% 30% : 70% 90% : 10% 81% : 19%

Fibroadenoma 3% : 97% 1% : 99% 66% : 34% 20% : 80%
Ductal Carcinoma 16% : 84% 8% : 92% 75% : 25% 48% : 52%

Biological tissue has a complex structure. The prominent advantage of the Plum Pudding
Random Medium model is that it provides a succinct description of the complex structure in
terms of a continuous medium of background refractive index fluctuation (pudding) and dis-
tinctive prominent structures embedded inside (plum) and faithfully reproduces the observed
spectroscopic light scattering properties (μs , μ′s and g) of biological tissue. Both the pudding
and the plum are essential for tissue light scattering. The reduced scattering coefficient μ′s of tis-
sue is dominated by the fractal scattering pudding which yields its powerlaw dependence on the
wavelength [16]. Moreover, PPRM provides a potential resolution to the long lasting puzzle that
for most biological tissue the anisotropy increases and light scattering is more forward directed
with the probing wavelength within visible and near-infrared spectral range. This “anomalous”
wavelength dependence of g originates from the core (plum).

PPRM offers a novel analytical platform to understand and interpret light scattering by the
complex structures in tissue. In modeling tissue light scattering, PPRM is much more transpar-
ent and efficient than the current approaches based on computational expensive FDTD simula-
tions [40–42] which is unable to model real tissue because of its prohibitive computational cost.
Most importantly, PPRM establishes the inherent connection between tissue structure charac-
teristics and its light scattering spectroscopy and opens up a new venue of quantifying the mi-
croscopic scattering constituents in tissue from macroscopic probing of a bulk with scattered
light. Fine microscopic structural alterations in tissue associated with cancer or physiological
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Fig. 6. Plum pudding random medium tissue model fitting to from top row to bottom row
(a) normal breast adipose tissue, (b) normal glandular breast tissue, (c) fibrocystic tissue,
(d) fibroadenoma, and (e) ductal carcinoma. The columns from left to right show μs , μ′s
and g. The background refractive index fluctuation and the core are shown together with
the PPRM tissue model. Experimental data is adapted from Peters et al [35].
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Fig. 7. The plum (core) and pudding (background refractive index fluctuation) in (a) normal
breast adipose tissue, (b) normal glandular breast tissue, (c) fibrocystic tissue, (d) fibroade-
noma, and (e) ductal carcinoma. The whole window size is 30μm × 30μm. The blue square
delineates a unit cell which contains exactly one core. A core of most probable radius
āc exp(−δ2) is shown, surrounded by a shaded area of radius āc exp(−δ2 + √

2 log 2δ) at
which the number density of the core drops to half maximum.

variations can then be deduced from noninvasive macroscopic light scattering spectroscopic
measurements. The characteristics of the pudding (background refractive index fluctuation) in
tissue has widely been used in early detection and diagnosis of cancer [16, 43–45]. The plum
(core) in the PPRM model corresponds to the most prominent scattering structures of higher
refractive index in tissue such as the nucleus or the nucleolus. The quantification of such cores
is hence of great prognostic value. The smaller nucleolar size has been shown to be correlated
with metastatic cells [38]. A new cancer grading system based on the size of the nucleolus has
also been recently adopted for renal cell carcinoma, which correlates well with prognosis [46].
The complete tissue characterization by PPRM will hence be instrumental in early detection
and diagnosis of tissue diseases including cancer. The deeper understanding of the nature of
tissue light scattering also offers important insight in optical sensing strategies that a method
interrogating μs is preferred to that detecting μ′s when the core is the target of interest whereas
the method detecting μ′s is better suited for sensing the background refractive index fluctuations
and a suitable choice of the probing wavelength can significantly enhance the sensitivity to the
target of interest.

4. Conclusions

We have presented here a plum pudding random medium tissue model which captures the key
feature of tissue light scattering structures that tissue behaves approximately as a continuum
(pudding) yet with some prominent structures (plum) which are distinctive from the background
medium. The background refractive index fluctuation is found to be well described by the frac-
tal continuous medium. The plum pudding random medium model faithfully reproduces the
wavelength dependence of tissue light scattering and its anisotropy. It provides a potential res-
olution to the lasting puzzle that tissue is scattered more into the forward directions by light of
longer wavelengths and attributes the “anomalous” trend in the anisotropy of light scattering to
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the plum whereas the pudding gives rise to the powerlaw dependence of the reduced scattering
coefficient on the probing wavelength. Most importantly, the plum pudding random medium
model opens up a novel venue of remote sensing of tissue architecture and microscopic struc-
tures from spectroscopic light scattering. With a complete quantification of the plum and the
pudding of tissue, PPRM accurately depicts fine tissue structural alterations on average associ-
ated with tissue disease states or physiological variations without excising the tissue.

One prominent advantage of optical methods is the rich spectroscopic content in tissue-light
interactions and the potential to probe morphological, biochemical and functional structure of
tissue noninvasively. The plum pudding random medium tissue model establishes the quanti-
tative connection between the rich spectroscopic content in light scattering and the underlying
tissue microstructure. PPRM may find wide applications in understanding and modeling tis-
sue light scattering, and enabling remote microscopy from spectroscopic scattered light, for
example, the promising development in in vivo optical histopathology of deep tissue from spec-
troscopic diffuse light measurement.

Appendix A: The large size limit for the fractal and Whittle-Matern continuum
model

See Table 4.

Appendix B: Lognormal size distribution of the core

The radius of the polydisperse core is assumed to follow a lognormal distribution,

f (a) =
1√
2πδ

a−1 exp
[

− ln2(
a
ā

)/2δ2
]

. (14)

The lognormal size distribution of parameters ā and δ attains its peak at ā/ exp(δ2) and a full
width at half maximum (FWHM) of the size distribution to be 2 sinh(

√
2 ln 2δ)ā/ exp(δ2). The

two important characteristics of the size distribution are the effective radius

aeff =

∫ ∞
0

a3 f (a)da
∫ ∞

0
a2 f (a)da

= a exp(5δ2/2) (15)

and the effective variance

νeff =

∫ ∞
0

(a − aeff )2a2 f (a)da

(aeff )2
∫ ∞

0
a2 f (a)da

= exp(δ2) − 1. (16)

These two characteristics are geometrical projection area weighted.

Appendix C: Empirical expressions for light scattering efficiencies of an optically
soft particle

The scattering cross section for the core is given by

Csca(x ,m) = πa2Qsca(x ,m) (17)

where x ≡ ka is the size parameter with a being the radius of the core and Qsca is the scattering
efficiency. In analog to Eq. (17), a similar efficiency can be defined for the reduced scattering
cross section C′

sca weighted by 1 − μ, i.e.,

C′
sca(x ,m) = πa2Q′

sca(x ,m) (18)
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Table 4. The light scattering expressions of the fractal and Whittle-Matern continuous
medium model in the limit of X = klmax , kl � 1 where α ≡

〈

δm(0)2
〉

π1/2 Γ(ν+3/2)
|Γ(ν) | , and

X = 2πn0lmax/λ and 2πn0l/λ, respectively, in the fractal and Whittle-Matern model. Both
models behave alike in this limit and their scattering properties dependence on wavelength
reduces to a power law with an identical power if interchanging D f and (4 − 2ν).

Fractal Model Whittle-Matern Model
μs

2
5 − D f

β2l−1
maxX

2

(D f < 5)

2Df −5(23 − 8D f + D2
f )

(D f − 1)(D f − 3)
π

sin
(
Df −5

2 π
) β2l−1
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Df −3
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4α
1 + 2ν

l−1X2

(ν > − 1
2

)

α
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(3 − 2ν)(4ν2 − 1)
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(− 1
2
> ν > − 3

2
)

μ′
s

2
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β2l−1

max
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2Df −3(D2
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sin
(
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2 π
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(
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2
> ν > − 3

2
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X−2

(D f < 3)

2Df −5(D2
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) XDf −5
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1
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The scattering efficiency is very well described by the anomalous diffraction theory for opti-
cally soft particles [47]

Qsca(x ,m) = 2 − 4
η

sin η +
4

η2
(1 − cos η), (19)

where η ≡ 2x(m − 1) is the optical delay for a ray passing through the center of the particle.
There are, however, no simple analytical expressions for Q′

sca, Q′′
sca and γ ≡ Q′′

sca/Q
′
sca where

Q′′
sca is defined in a similar fashion to Q′

sca with the weighting factor (1 − cos θ) replaced by
(1 − P2(cos θ)) where P2 is the second order Legendre polynomial. For a size parameter 10 <
x < 200 and |m − 1| ≤ 0.05, simple empirical expressions can be fitted from the exact Mie
solution as following:

Q′
sca(x ,m)=2π |m−1|2 (0.578−3.256 |m−1|)x2.690|m−1|+0.217 , (20)

Q′′
sca(x ,m)=γ(x ,m)Q′

sca(x ,m) (21)
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Fig. 8. The scattering efficiency Qsca, the reduced scattering efficiency Q′
sca, the anisotropy

factor g, and the γ factor for optically soft particle of size parameter 10 < x < 200. The
empirical expressions (in solid lines) and the exact values from Mie theory (in symbols)
are shown for m = 1.01, m = 1.02, ..., m = 1.05.

and

γ(x ,m) = 32.2 |m−1|2−5.22 |m−1|+1.929−(0.1528 |m−1|−0.00076) (22)

×
(

η−12.097+424.72 |m−1|−4465.1 |m−1|2
)

√
η

.

The average relative error within the regime is 0.85% and 0.37% for Q′
sca and γ, respectively.

Their maximum relative error does not exceed 6% and 2%. The anisotropy factor is given by
g(x ,m) = 1 − Q′

sca/Qsca. The empirical expressions (in solid lines) and the exact values from
Mie theory (in symbols) for Qsca, Q′

sca, g and γ are displayed in Fig. 8.
For polydisperse soft particles following a lognormal size distribution, em-

pirical expressions have also been obtained over the region |m − 1| ≤
0.15 and 0 < x < 200 for Q̄sca, Q̄′

sca and Q̄′′
sca in the form of

2π (1 + d1 |m − 1|) |m − 1|d2
[

c0 + c1 − (c1 + c3) sin(c4y )
c4y

exp(−c2y) +2c3
1−cos(c6y ) exp(−c5y )

(c6y )2

]

where y ≡ x |m − 1|d3 . The parameters are given in Table 5. The polydispersity of the scatterers
averages out the highly oscillatory terms in Mie scattering and hence extends the valid region
for the empirical expressions. The value given by the empirical expression for Q̄sca has a mean
squared root error of 2.4% and the maximum error less than 5.0% as long as |m − 1| x ≥ 1.
When 1 ≤ |m − 1| x ≤ 15, the value given by the empirical expressions for Q̄′

sca has a mean
squared root error of 1.8% and the maximum error less than 5.5% whereas the value given by
the empirical expression for Q̄′′

sca has a mean squared root error of 1.5% and the maximum
error less than 6.9%. The anisotropy factor g and γ for polydispersed soft particles are plotted
in Fig. 9.

Appendix D: Fitting procedure

As the reduced scattering is often dominated by the background refractive index fluctuation, we
adopt the following multi-step procedure when we fit PPRM to the measured spectroscopic data:
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Table 5. Parameters for empirical expressions of Q̄sca, Q̄′
sca and Q̄′′

sca.

c0 c1 c2 c3 c4 c5 c6 d1 d2 d3

Q̄sca 0 0.3161 0.0768 0.2204 2.0465 -0.0103 1.5213 0.712 0 1
Q̄′

sca 0.4292 0.1704 0.3908 1.0386 2.2673 -0.0300 2.6834 -1.095 1.613 1.725
Q̄′′

sca 0.6572 0.0465 0.6964 1.4930 3.1693 -0.0358 4.0711 -1.642 1.579 1.806

Fig. 9. The anisotropy factor g and γ for polydispersed soft particles (νeff = 1.0%). The
symbols are from Mie calculations and the solid lines are from the empirical expressions
for g = 1 − Q̄′

sca/Q̄sca and γ = Q̄′′
sca/Q̄

′
sca over the range 1 ≤ |m − 1| x ≤ 17.5.

(1) Fit the fractal or Whittle-Matern continuum model alone to the observed reduced scattering
coefficient data for (lmax , D f ) or (l , ν); (2) Fit the PPRM tissue model to the observed g(λ) for
āc , mc ,δ, and Nc by fixing the parameters obtained in (1) unchanged; and (3) Fit the PPRM
tissue model to all observed data μ′s (λ), μs (λ) and g(λ) using the results from (1) and (2) as
the initial guess. To avoid trapping inside a local minimum, global minimization with basin
hopping [48] or the particle swarm algorithm is used in the last step.

The fitting error reported in Table 1 and 2 is the mean least squared error defined by

⎡

⎢
⎢
⎢
⎢
⎢
⎣
μ̄−2
s ,meas

∑

λ

(μs ,mod − μs ,meas)
2 + μ̄′−2

s ,meas

∑

λ

(μ′s ,mod − μ′s ,meas)
2 +ḡ−2

meas

∑

λ

(gmod − gmeas)
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1/2

between the model (“mod”) and the measurement (“meas”) where μ̄s ,meas etc are the average of
the measured data to homogenize the contributions from μs , μ′s and g.
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